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Abstract: We revisit the method of kinematical endpoints for particle mass determi-

nation, applied to the popular SUSY decay chain q̃ → χ̃0
2 → ℓ̃ → χ̃0

1. We analyze the

uniqueness of the solutions for the mass spectrum in terms of the measured endpoints in

the observable invariant mass distributions. We provide simple analytical inversion formu-

las for the masses in terms of the measured endpoints. We show that in a sizable portion of

the SUSY mass parameter space the solutions always suffer from a two-fold ambiguity, due

to the fact that the original relations between the masses and the endpoints are piecewise-

defined functions. The ambiguity persists even in the ideal case of a perfect detector and

infinite statistics. We delineate the corresponding dangerous regions of parameter space

and identify the sets of “twin” mass spectra. In order to resolve the ambiguity, we propose

a generalization of the endpoint method, from single-variable distributions to two-variable

distributions. In particular, we study analytically the boundaries of the {mjℓ(lo),mjℓ(hi)}
and {mℓℓ,mjℓℓ} distributions and prove that their shapes are in principle sufficient to re-

solve the ambiguity in the mass determination. We identify several additional independent

measurements which can be obtained from the boundary lines of these bivariate distribu-

tions. The purely kinematical nature of our method makes it generally applicable to any

model that exhibits a SUSY-like cascade decay.
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1 Introduction

The dark matter problem of astroparticle physics [1] greatly motivates the search for neu-

tral, stable and weakly interacting massive particles (WIMPs) at colliders [2]. WIMPs are

also rather ubiquitous in Beyond Standard Model (BSM) physics at the TeV scale. Un-

fortunately, at the hadron colliders of the current energy frontier (the Fermilab Tevatron

and the Large Hadron Collider (LHC) at CERN), the process of direct WIMP production,

tagged with a jet or a photon from initial state radiation, suffers from insurmountable

backgrounds [3–5]. In contrast, the chances of a discovery are typically greatly enhanced

in case of indirect production, where the WIMPs are produced in the decays of heavier,

more strongly interacting particles.

Since the WIMPs are usually stable due to some new conserved quantum number,

they cannot be singly produced in collisions of light SM particles. The prototypical WIMP

example is the lightest superpartner (LSP) (typically the lightest neutralino χ̃0
1) in low-

energy supersymmetry (SUSY) with R-parity conservation [6].1 The superpartners are

produced in pairs and each one decays through a cascade decay chain down to the χ̃0
1 WIMP,

which does not interact in the detector and can only manifest itself as missing energy

1More recently, it was realized that many of the features of R-parity conserving SUSY are also shared by

other model frameworks, such as Universal Extra Dimensions (UED) [7–9], Warped Extra Dimensions [10–

12], Little Higgs theory with T -parity [13, 14], etc.
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Figure 1. The generic decay chain considered in this paper: D → jC → jl±n B → jl±n l∓f A. Particles

A, B, C and D are new BSM particles, while the corresponding SM decay products consist of a jet j,

a “near” lepton l±n and a “far” lepton l∓f . a) In the two-body (on-shell) scenario, C is kinematically

allowed to decay to B, which then decays to A. b) In the three-body (off-shell) scenario, C is

kinematically prohibited to decay to B, and decays directly to A.

(MET). Since each event contains two unobserved WIMPs (with unknown mass), measuring

the masses, spins, etc. of the new particles is a very challenging task. In recognition of

this fact, in recent years there has been an increased interest in developing new techniques

for mass [15–58] and spin [59–81] measurements in such SUSY-like missing energy events.

There are three basic types of mass determination methods, which are reviewed and

contrasted in ref. [56]. In this paper we concentrate on the classic method of kinematical

endpoints [15]. Following the previous SUSY studies, for illustration of our results we shall

use the generic decay chain D → jC → jl±n B → jl±n l∓f A shown in figure 1. Here A, B, C

and D are heavy BSM particles, while the corresponding SM decay products are: a QCD

jet j, a “near” lepton l±n and a “far” lepton l∓f . This chain is quite common in SUSY, with

the identification D = q̃, C = χ̃0
2, B = l̃ and A = χ̃0

1, where q̃ is a squark, l̃ is a slepton,

and χ̃0
1 (χ̃0

2) is the first (second) lightest neutralino. However, our analysis is not limited to

SUSY, since the decay chain in figure 1 is rather typical for other BSM models as well, e.g.

UED [9]. For completeness, we shall consider the two different cases shown in figures 1(a)

and 1(b), correspondingly. In figure 1(a) mB < mC , so that the C → l±n B decay is two-

body. In what follows, we shall refer to this case as the “two-body” or “on-shell” scenario.

On the other hand, in figure 1(b) mB > mC and the decay C → l±n l∓f A is three-body,

leading to a “three-body” or “off-shell” scenario [33]. In the two-body scenario, the goal is

to determine all four unknown masses, mD, mC , mB , and mA. In the three-body scenario,

the goal is to determine the three2 unknown masses, mD, mC , and mA. Of course, the

scenario is not known until the data are examined, thus an additional goal of our analysis

will be to identify the particular scenario at hand.

The idea of the kinematic endpoint method is very simple. Given the SM decay

products exhibited in figure 1, form the invariant mass3 of every possible combination, mll,

2In the three-body scenario of figure 1(b), it may still be possible to extract the fourth mass mB from the

data, e.g. by analyzing the shapes of the invariant mass distributions [28]. However, those approaches are

quite challenging, since the shapes depend on a number of additional factors: the experimental resolution,

the spins of the new particles, the shape of the underlying backgrounds, etc. In contrast, here we are

concentrating on methods which use only kinematic endpoint information and are thus immune to those

detrimental factors.
3We shall see below that the formulas simplify if we consider invariant masses squared instead. This

distinction is not central to our analysis.
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mjln , mjlf , and mjll. Since l±n and l∓f cannot be distinguished on an event-by-event basis,

one has to introduce an alternative definition of the jl distributions. For example, one

can identify the two leptons by their charge and consider the samples {jl+} and {jl−},
which are experimentally well defined. This approach turned out to be very useful for spin

studies [59, 61, 67, 80], since spin effects are encoded in the difference between those two

distributions. However, for mass determination, it is more suitable to use an mjl ordering

by invariant mass:

mjl(lo) ≡ min
{

mjln ,mjlf

}

, (1.1)

mjl(hi) ≡ max
{

mjln ,mjlf

}

. (1.2)

Both of the newly defined quantities mjl(lo) and mjl(hi) also exhibit upper kinematic end-

points (mmax
jl(lo) and mmax

jl(hi), correspondingly), which are experimentally measurable. To-

gether with the measured kinematic endpoints mmax
ll and mmax

jll of the mll and mjll distri-

butions, this gives 4 measurements

mmax
ll ,mmax

jll ,mmax
jl(lo),m

max
jl(hi), (1.3)

which are known functions4 of only 4 unknown parameters (mA, mB, mC and mD).

Therefore, by inverting those relations, i.e. solving the so called “inverse problem” at the

LHC [82], one would expect to be able to determine the complete spectrum, at least as a

matter of principle.

However, this determination can be ambiguous, and several alternative solutions for

the masses may emerge, as already recognized in, for example [26, 82–89]. This may happen

for one of the following reasons.

1. Insufficient number of measurements. The four measurements (1.3) may not all be

independent from each other. Indeed, there are certain regions of parameter space

(reviewed explicitly below in section 2.1) where one finds the following correlation [26]

(

mmax
jll

)2
=
(

mmax
jl(hi)

)2
+ (mmax

ll )2 . (1.4)

In this case, the four measurements (1.3) are clearly insufficient and one has to sup-

plement them with an additional measurement. To this end, it has been suggested to

consider the constrained distribution mjll(θ> π
2
), which exhibits a useful lower kine-

matic endpoint mmin
jll(θ> π

2
) [21]. The distribution mjll(θ> π

2
) is nothing but the usual

mjll distribution over a subset of the original events, subject to the additional dilepton

mass constraint
mmax

ll√
2

< mll < mmax
ll . (1.5)

In the rest frame of particle B, this cut implies the following restriction on the opening

angle θ between the two leptons [20]

θ >
π

2
, (1.6)

4See section 2.1 below.

– 3 –
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thus justifying the notation for mjll(θ> π
2
). In what follows, we shall therefore always

supplement the original set of 4 measurements (1.3) with the additional measurement

of mmin
jll(θ> π

2
):

mmax
ll ,mmax

jll ,mmax
jl(lo),m

max
jl(hi),m

min
jll(θ> π

2
), (1.7)

so that in principle there is sufficient information to determine the four unknown

masses. Then, we shall concentrate on the question whether this determination is

unique or not, i.e. we shall be concerned only with discrete ambiguities. As discussed

in more detail below in sections 2 and 3, these discrete ambiguities arise due to

the very nature of the mathematical problem: the relations giving the endpoints in

terms of the masses are piecewise-defined functions, i.e. their definitions depend on

the values of the independent variables (the masses mA, mB, mC and mD). Since the

masses are unknown, it is not clear which definition is the relevant one, and one must

consider all possibilities, obtain each solution, and test for consistency at the very end.

2. Experimental resolution. Ideally, the procedure just described would yield a single

consistent solution. Indeed, this is what happens throughout a large portion of the

parameter space. One should keep in mind that the measurements (1.7) inevitably

come with some experimental errors, so that within those experimental uncertainties,

two or more solutions are possible [26, 27, 83]. One specific example of this type is

shown in table 1 for the SPS1a(α) mass spectrum, which was extensively studied

in [26]. Even with 300 fb−1 of data at the LHC, the residual experimental uncertain-

ties (due to the finite detector resolution, statistical and systematic errors, etc.) will

still allow two solutions: a “true” and a “false” one, as shown in the table. However,

this is not a true ambiguity in the sense that it arises simply due to limitations in

the experimental precision. With time, the latter would be expected to improve and

the ambiguity may eventually get resolved. For example, the statistical errors would

be reduced with even more data.5

3. Non-uniqueness of the inversion. Even in the ideal case of a perfect experiment,

which would yield results for all the five measurements (1.7) with zero error bars,

there may still be multiple solutions to the inversion problem. One of the main

goals of this paper is to identify the specific circumstances when this takes place. In

section 3 we shall analyze the physical mass parameter space of SUSY and find a

sizable portion in it where an exact duplication occurs, i.e. if Nature chooses a SUSY

spectrum from that region, the measurements (1.7) will be consistent with two and

only two SUSY mass spectra: the nominal one, plus a “fake”. We emphasize the

fact that the duplicate solutions we find yield mathematically identical values for all

five experimental observables in (1.7). Therefore, neither improvements in the ex-

perimental resolution, nor increased statistics will be able to resolve this duplication.

5It is also worth noting that ref. [26] conservatively assigned a rather large systematic error for the

mmin
jll(θ> π

2
) measurement, since the analytical shape of its edge was unknown at the time. Since then, the

shape was derived in [32], so that by now the threshold measurement mmin
jll(θ> π

2
) should be considered on

equal footing with the other measurements in (1.7).
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SPS1a(α) [26, 83] SU1 [84] SU3 [84]

Variable Nominal True False True False True False

mχ̃0
1

96.1 96.3 85.3 137.0 122.1 118.0 346.8

m
l̃R

143.0 143.2 130.4 254.0 127.5 155.0 411.1

mχ̃0
2

176.8 177.0 165.5 264.0 245.9 219.0 451.6

mq̃L
537.2 537.5 523.5 760.0 743.6 631.0 899.9

Region (1,1) (1,1) (1,2) (1,1) (1,3) (1,3) (1,1)

mmax
ll 77.0 77.0 77.1 61 100

mmax
jl(lo) 298.3 298.3 299.6 194 322

mmax
jl(hi) 375.6 375.6 375.7 600 418

mmax
jll 425.8 425.8 425.6 609 499

mmin
jll(θ> π

2
) 200.6 200.6 205.1 143 148 247 214

Table 1. Examples of “mass ambiguities” previously reported in [26, 83, 84]. The nominal values

for the mass spectrum are given in the leftmost column in each case. The analysis of [26, 83] for the

SPS1a(α) study point used all five available measurements (1.7), and included detector resolution

effects and statistical and systematic errors. As a result, in the case of SPS1a(α) there are two

solutions: the “true” one is in the correct region (1,1) and is close to the nominal values, while the

“false” one is in the wrong region (1,2), but nevertheless matches all of the observed invariant mass

endpoints (1.7) within the experimental uncertainties. The study points SU1 and SU3 are taken

from [84], where one requires a perfect match to only the four kinematic endpoints (1.3), ignoring

any experimental errors. In this case the true and false spectra predict different values of mmin
jll(θ> π

2
).

Several studies in the literature [26, 34, 83, 84] have already raised the issue of a

potential ambiguity in the SUSY mass determination. Some representative examples

from those works are shown in table 1. As already mentioned, the duplication found

in [26, 83] in the case of SPS1a(α) was simply due to the experimental uncertainties,

and would be resolved in a perfect experiment. On the other hand, the duplication

in the case of SU1 and SU3 found in ref. [84] is exact, but relies on only four (namely,

the set (1.3)) out of the five available measurements (1.7). As seen from table 1,

the inclusion of the threshold mmin
jll(θ> π

2
) will in principle resolve the ambiguity. In

contrast, we use the full set of measurements (1.7), including mmin
jll(θ> π

2
), and we still

find exact duplication. In this sense, our findings, first reported in [86, 87], are new,

and extend the results of [26, 34, 83, 84]. For example, we find that exact duplication

occurs in the (2,3), (3,1) and (3,2) parameter space regions (according to the classi-

fication in section 2), while the examples in table 1 belong to regions (1,1), (1,2) and

(1,3). It is also worth pointing out that the duplicated regions of parameter space

that we find are not consistent with a typical MSUGRA-type scenario, which may

explain why this problem has not been more broadly appreciated earlier. Numerical

examples of a duplication similar to ours have previously been presented in [82], and

our analytical results below in section 3 now help understand their origin.

– 5 –
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Having identified the problem of duplication in the measured mass spectrum, in the

second part of the paper we present a new method for its solution. As already empha-

sized, the two-fold ambiguity in the spectrum is exact, so it cannot be resolved by simply

improving the experimental precision on the kinematical endpoint measurements (1.7). In-

stead, additional experimental input is needed. One option is to consider a longer decay

chain, which would yield several additional endpoint measurements. For example, the de-

cay chains in figure 1 may begin with an even heavier particle (say, E), at the expense

of a single new parameter (the mass of particle E) [27]. However, the presence of such a

decay chain in the data is a model-dependent assumption and is by no means guaranteed.

Alternatively, one may supplement (1.7) with data from a future lepton collider [83], but

its existence is also an assumption and is by no means guaranteed. Therefore we do not

consider these possibilities here.

Instead, we concentrate on the question: What additional information, which is already

present in the hadron collider data, can be used to resolve the ambiguity? It is important

to realize that in very general terms, the kinematics of the decay in figure 1 is governed by

some three-dimensional differential distribution

d3Γ

dα dβ dγ
, (1.8)

where α, β and γ are some suitably chosen angles specifying the particular decay configura-

tion (see, e.g. [61]). Through a change of variables, these angles can be traded for three in-

variant mass combinations of the visible decay products in figure 1, e.g. mll,mjl+,mjl− [69],

but other sets are equally possible, let us denote a generic such set by {m1,m2,m3}. In

place of (1.8) one then has
d3Γ

dm1dm2dm3
. (1.9)

The distribution (1.9) is experimentally observable and is nothing but a three-dimensional

histogram. It contains the full information about the decay in figure 1, including the

particle mass and spin information. The only disadvantage of (1.9) is that it cannot be

easily visualized.

In order to obtain a kinematic endpoint for some mass parameter, say m1, one then

simply integrates over the other two degrees of freedom, and builds the one-dimensional

distribution
dΓ

dm1
≡
∫

dm2dm3
d3Γ

dm1dm2dm3
. (1.10)

This, being a one-dimensional distribution, exhibits an upper endpoint mmax
1 . However,

in the process of integration in (1.10), one is losing a certain amount of the original in-

formation contained in (1.9). Some of this information can be recovered if we consider a

two-dimensional (bivariate) distribution, e.g. in (m1,m2):

d2Γ

dm1dm2
≡
∫

dm3
d3Γ

dm1dm2dm3
. (1.11)

This, being a two-dimensional distribution, will exhibit not an endpoint, but a boundary

line, which can be parameterized by a single parameter t as (m1(t),m2(t)). Finally, if

– 6 –
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we stick to the original three-dimensional distribution (1.9), we will obtain a boundary

surface, parameterized by two parameters, t1 and t2, as (m1(t1, t2),m2(t1, t2),m3(t1, t2)).

Given that bivariate and trivariate distributions are more informative than the simple one-

dimensional histograms, it is rather surprising that they have not been used more often in

the previous analyses of SUSY mass determination.

The second part of the paper is thus devoted to the analysis of bivariate distributions

of the type (1.11).6 In particular, in section 4 (section 5) we analyze the boundaries of

the bivariate distributions in terms of m2
jl(lo) and m2

jl(hi) (m2
jll and m2

ll). We show that the

shapes of those distributions are very distinct and can be used to identify qualitatively the

type of spectrum at hand, thus resolving the duplication discussed above. We also provide

analytical formulas for the boundaries of the kinematically allowed regions, which can be

used to further quantitatively improve on the mass determination (see also [89]). Clearly,

fitting to a line would yield a better precision of determining the mass parameters than

simply fitting to a point. What is more, we shall show that the bivariate distributions offer

the possibility of several additional measurements, in addition to those in (1.7). These are

the locations of some special points on the boundary lines, for which we provide analytic

expressions in terms of the masses mA, mB, mC and mD. These special points are typically

hidden as subtle features of the one-dimensional distributions but are transparent on the

bivariate distributions which we are advertising here.

In conclusion of this section, we summarize the main goals and results of this paper

and point to the sections where those results can be found.

• Analytical solution of the inverse problem. In section 2.2 we provide analytical for-

mulas which allow one to calculate directly the BSM mass spectrum mA, mB, mC

and mD in terms of the experimental inputs (1.7). Our formulas are completely

general, for example, they are valid for both the on-shell scenario of figure 1(a) as

well as the off-shell scenario of figure 1(b). In addition, they can be applied to all

regions in parameter space. The availability of exact analytical expressions for the

mass spectrum in terms of the observed kinematical endpoints makes numerical fit-

ting (e.g. with a program like Fittino [90]) unnecessary. An important simplification

in our approach is that we only need to consider four different cases, as opposed to

the 11 cases usually discussed in the literature.

• In section 3 we identify the complete SUSY mass parameter space where exact du-

plication occurs, i.e. two very different mass spectra predict identical values for all

five endpoint measurements (1.7).

• In section 4 we analyze the shape of the bivariate distribution in terms of m2
jl(lo) and

m2
jl(hi). We identify the characteristic shape of the boundary lines of the distribution

for each of our four parameter space regions. The shape not only allows to resolve

the ambiguity discovered in section 3, but also contains a lot of additional useful

information. For example, the shape analysis yields an additional measurement of

6Preliminary results of our work were reported in [85, 87]. Similar ideas were discussed more recently

in [88, 89].

– 7 –
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an “edge” point, m
(p)
jlf

, and also allows to determine the endpoints mmax
jln

and mmax
jlf

of the underlying mjln and mjlf distributions. The analytic solution to the inverse

problem (presented in appendix A) takes a particularly simple form if we make use of

these new measurements and consider the alternative set {mmax
ll ,m

(p)
jlf

,mmax
jln

,mmax
jlf

}.

• In section 5 we perform a similar shape analysis of the bivariate distribution in terms

of m2
jll versus m2

ll.

2 Analytical results

In this section we present the analytical formulas which allow one to go from the mass spec-

trum to the experimentally observable endpoints (section 2.1) and vice versa (section 2.2).

Before we begin, we introduce some notation. Following existing studies in the litera-

ture [30, 61, 67, 80], we shall redefine the original mass parameter space

{mA,mB ,mC ,mD} (2.1)

in terms of an overall squared mass scale, m2
D, and squared mass ratios7

Rij ≡
m2

i

m2
j

, (2.2)

where i, j ∈ {A,B,C,D}. Note that there are only three independent squared mass ratios

in (2.2), which we shall take as the set {RAB , RBC , RCD}. However, in what follows we

shall also make use of the other ratios, e.g. RAC , RAD and RBD, whenever this will lead

to a simplification of our formulas. Of course, the latter are related to our preferred set

{RAB , RBC , RCD} due to the transitivity property

RijRjk = Rik . (2.3)

Notice also the useful identity

RijRkl = RilRkj. (2.4)

We also require all of the mass parameters (2.2) to be positive semidefinite. Our analysis

assumes three additional absolute conditions on these parameters.

RAB < 1 , RAC < 1 , RCD < 1 . (2.5)

This imposes a general mass hierarchy,

0 < mA < mC < mD, (2.6)

while for the mass of B the only constraint is mA < mB. Depending on the mass of B,

we can obtain either the on-shell scenario of figure 1(a), in which mA < mB < mC , or

the off-shell scenario of figure 1(b), in which mC < mB and possibly even mD < mB. In

summary, we shall use

{mD, RAB , RBC , RCD} (2.7)

as our default parametrization of the 4 dimensional mass parameter space (2.1).

7The practice of redefining the parameter space in terms of squared mass ratios is quite common in the

literature. For example, our variables {RCD , RBC , RAB} exactly correspond to the variables {x, y, z} used

in [61, 67, 80] and the parameters {RC , RB , RA} used in [30].

– 8 –
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2.1 Forward formulas

Here we list the well known formulas for the endpoints (1.7) in terms of the parameters (2.7)

introduced above.

2.1.1 On-shell scenario

In the on-shell scenario the kinematical endpoints are given by the following formulas:

a ≡ (mmax
ll )2 = m2

D RCD (1 − RBC) (1 − RAB); (2.8)

b ≡
(

mmax
jll

)2
=



















m2
D(1− RCD)(1− RAC), for RCD < RAC , case (1,−),

m2
D(1− RBC)(1− RABRCD), for RBC < RABRCD, case (2,−),

m2
D(1− RAB)(1− RBD), for RAB < RBD, case (3,−),

m2
D

(

1−√
RAD

)2
, otherwise, case (4,−);

(2.9)

c ≡
(

mmax
jl(lo)

)2
=























(

mmax
jln

)2
, for (2 − RAB)−1 < RBC < 1, case (−, 1),

(

mmax
jl(eq)

)2
, for RAB < RBC < (2 − RAB)−1, case (−, 2),

(

mmax
jl(eq)

)2
, for 0 < RBC < RAB , case (−, 3);

(2.10)

d ≡
(

mmax
jl(hi)

)2
=























(

mmax
jlf

)2
, for (2 − RAB)−1 < RBC < 1, case (−, 1),

(

mmax
jlf

)2
, for RAB < RBC < (2 − RAB)−1, case (−, 2),

(

mmax
jln

)2
, for 0 < RBC < RAB, case (−, 3);

(2.11)

where

(

mmax
jln

)2
= m2

D (1 − RCD) (1 − RBC) , (2.12)
(

mmax
jlf

)2
= m2

D (1 − RCD) (1 − RAB) , (2.13)
(

mmax
jl(eq)

)2
= m2

D (1 − RCD) (1 − RAB) (2 − RAB)−1 . (2.14)

The physical meaning of the latter three quantities will become clear in the course of the

discussion in section 4. Finally, the endpoint mmin
jll(θ> π

2
) introduced earlier in the Introduc-

tion, is given by

e ≡
(

mmin
jll(θ> π

2
)

)2
=

1

4
m2

D

{

(1 − RAB)(1 − RBC)(1 + RCD) + 2 (1 − RAC)(1 − RCD)

−(1 − RCD)
√

(1 + RAB)2(1 + RBC)2 − 16RAC

}

. (2.15)

The physical meaning of the latter quantity will be revealed in section 5. In (2.8)–(2.15)

we have introduced some convenient shorthand notation

a = (mmax
ll )2 , b =

(

mmax
jll

)2
, c =

(

mmax
jl(lo)

)2
, d =

(

mmax
jl(hi)

)2
, e =

(

mmin
jll(θ> π

2
)

)2
(2.16)
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Figure 2. A slice through the {RAB, RBC , RCD} parameter space at a fixed RCD = 0.3, illustrat-

ing the 11 parameter space regions (Njll, Njl) resulting from the piecewise-definition of the mmax
jll

endpoint in eqs. (2.9) and (2.19) and the (mmax
jl(lo), m

max
jl(hi)) endpoints in eqs. (2.10), (2.11), (2.20)

and (2.21). The four Njl regions used later in our analysis are color-coded as follows: Njl = 1

(green); Njl = 2 (magenta); Njl = 3 (cyan) and Njl = 4 (yellow).

for the kinematical endpoints of the mass squared distributions.8

One can see that the formulas (2.9)–(2.11) are piecewise-defined: they are given in

terms of different expressions, depending on the parameter range for RAB , RBC and RCD.

This divides the {RAB , RBC , RCD} parameter space into several distinct regions, illustrated

in figure 2. Following [26], we label those by a pair of integers (Njll, Njl). As already

indicated in eqs. (2.9)–(2.11), the first integer Njll identifies the relevant case for mmax
jll ,

while the second integer Njl identifies the corresponding case for (mmax
jl(lo),m

max
jl(hi)). In the

on-shell case considered here, only 9 out of the 12 pairings (Njll, Njl) are physical, and

they are all exhibited within the unit square of figure 2. The remaining two regions (5, 4)

and (6, 4) seen in figure 2 correspond to the off-shell case and will be introduced below in

section 2.1.2. Notice at this point that the formula for the mmin
jll(θ> π

2
) threshold is unique.

Using (2.8), (2.9) and (2.11), it is easy to check that the relation (1.4), which can be

equivalently rewritten in the new notation as

b = a + d, (2.17)

is identically satisfied in regions (3,1), (3,2) and (2,3) of figure 2. Therefore, in these

regions one would necessarily have to rely on the additional information provided by the

measurement of the e endpoint (2.15).

8Note that ref. [26] uses a, b, c, d to label the same endpoints, but for the linear masses instead of the

masses squared.
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2.1.2 Off-shell scenario

We now list the relevant formulas [33] for the off-shell scenario of figure 1(b), in which

mB > mC , i.e. RBC > 1:

a ≡ (mmax
ll )2 = m2

D RCD (1 −
√

RAC)2; (2.18)

b ≡
(

mmax
jll

)2
=







m2
D(1 − RCD)(1 − RAC), for RCD < RAC , case (5,−),

m2
D(1 −√

RAD)2, otherwise, case (6,−);
(2.19)

c ≡
(

mmax
jl(lo)

)2
=

1

2
m2

D(1 − RCD)(1 − RAC), case (−, 4); (2.20)

d ≡
(

mmax
jl(hi)

)2
= m2

D(1 − RCD)(1 − RAC), case (−, 4); (2.21)

e ≡
(

mmin
jll(θ> π

2
)

)2
=

1

4
m2

D(1 −
√

RAC)

{

2RCD(1 −
√

RAC)

+(1 − RCD)

(

3 +
√

RAC −
√

1 + RAC + 6
√

RAC

)}

. (2.22)

Notice the absence of the B index in these expressions, indicating that they are indeed

independent of the mass mB of the heavy (off-shell) particle B. Nevertheless, the off-

shell case can still be represented in the (RBC , RAB) parameter plane of figure 2 as the

right-most yellow-shaded region. Its left boundary is the line RBC = 1, beyond which

particle B becomes on shell, while its upper boundary is the line RABRBC = RAC = 1,

beyond which A is heavier than C and C becomes the LSP, which contradicts our original

assumption (2.6). For consistency with the earlier notation (Njll, Njl) for the on-shell

parameter space regions, we shall simply use Njl = 4 to label the single off-shell case

for {c, d} = {(mmax
jl(lo))

2, (mmax
jl(hi))

2}, and Njll = 5, 6 to label the corresponding two off-shell

expressions for b = (mmax
jll )2 given in eq. (2.19). This gives us a total of 11 allowed (Njll, Njl)

combinations, which are all exhibited in figure 2.

2.2 Inversion formulas

Having presented all the “forward” formulas for the five kinematic endpoints a, b, c, d and

e in terms of the mass parameters Rij and mD, we are now in position to tackle the inverse

problem: deriving the inverse relations, which would give the mass spectrum mA, mB, mC

and mD in terms of the measured endpoints a, b, c, d and e. Our goal will be to obtain the

exact analytical inverse formulas for each of the relevant parameter space regions of figure 2.

Until now, the inverse relations have been derived for only 6 of the 11 regions, namely (1,1),

(1,2), (1,3), (4,1), (4,2) and (4,3), and have never included the e measurement [26].

Before we begin, we need to make a decision about the following issue. In general,

the system appears to be over-constrained, since we are trying to solve for four unknowns

(mA, mB , mC and mD) in terms of five measurements (a, b, c, d and e). Therefore, for the

purpose of inversion, we are allowed to drop one of the five measurements and use only the

remaining four. Which measurement should we drop? This question actually turns out to

be quite important for the subsequent discussion.

– 11 –
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The approach of ref. [26] (which considered only the on-shell case of figure 1(a)) was

to eliminate e and use only a, b, c, and d. The reasoning was that the “forward” expression

for e (2.15) appears to be too complicated to be tackled by analytic means. However, the

problem with this approach is that it cannot be applied in the three on-shell regions (3,1),

(3,2) and (2,3), where the three measurements a, b and d are not independent, due to the

relation (2.17). Therefore, in order to obtain inverse relations valid over the full parameter

space of figure 2, we must make use of the mmin
jll(θ> π

2
) measurement (2.15). For the same

reason, we must also use the mmax
jl(lo) measurement (2.10). Therefore, the choice of candidates

to be omitted is narrowed down to three: a, b and d, i.e. precisely the problematic ones

entering the linear dependence relation (2.17).

Leaving aside the experimental issues of precision, at this point it should be clear that

it is most convenient to drop the b measurement and always perform the inversion in terms

of a, c, d and e. There are two important advantages of our approach:

• Since we are never using the b measurement, the linear dependence (2.17) between a,

b and d never becomes an issue, and the same four inputs a, c, d and e can be used

in all parameter space regions (Njll, Njl).

• More importantly, once we eliminate b from the discussion, we do not have to worry

about the division of the parameter space into regions labelled by the integer Njll.

Instead, the full parameter space is now divided just into the four color-coded regions

of figure 2, each of which is uniquely identified by the value of Njl and from now on

will be labelled as RNjl
:

1. Region R1 (Njl = 1), defined by 1
2−RAB

< RBC < 1 and shaded green in figure 2.

2. Region R2 (Njl = 2), defined by RAB < RBC < 1
2−RAB

and shaded magenta in

figure 2.

3. Region R3 (Njl = 3), defined by 0 < RBC < RAB and shaded cyan in figure 2.

4. Region R4 (Njl = 4), defined by 1 < RBC and shaded yellow in figure 2.

In what follows, we sometimes refer to regions R1 , R2 and R3 collectively as the “on-shell”

region, and region R4 as the “off-shell” region, in reference to whether particle B is on-shell

or off-shell. This distinction is in one-to-one correspondence with the distinction between

the two-body scenario of figure 1(a) and the three-body scenario of figure 1(b), respectively.

Note that the region identification only depends on the two mass parameters RAB and

RBC . For comparison, the original endpoint method utilizing the b measurement, required

all eleven regions of figure 2, whose definitions depend also on RCD, and one must check the

solution for consistency in each region by trial and error [26]. Instead, we have now reduced

the number of regions from eleven down to four. Furthermore, in section 4 we shall show

that the shape of the kinematical boundaries of the m2
jl(hi) versus m2

jl(lo) distribution reveal

the exact region Ri in which the mass spectrum occurs, thus eliminating the need for trial-

and-error inversion altogether. We consider this to be one of our most important results.

– 12 –
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With those preliminaries, we are now ready to present our inversion formulas which

can be cast in the following form common to all regions:

m2
A = Gi (αi − 1) (βi − 1) (γi − 1) , (2.23)

m2
B = Gi (αi − 1) (βi − 1) γi, (2.24)

m2
C = Gi (αi − 1) βi γi, (2.25)

m2
D = Gi αi βi γi. (2.26)

where the subscript i = 1, 2, 3, 4 is used to indicate the corresponding (color-coded) region

Ri of figure 2. The quantities Gi, αi, βi, and γi are functions of the measured endpoints

{a, c, d, e} and are region-dependent, just like the “forward” expressions for the endpoints

in terms of the input masses (see section 2.1). Before defining Gi, αi, βi, and γi, we identify

an ubiquitous combination of observables

g ≡ 2e − a (2.27)

and use it in place of e, so that our starting point is the equivalent set of four measurements

{a, c, d, g}. Then the quantities appearing on the right hand side of eqs. (2.23)–(2.26) are

defined by

G1 ≡ g (2d − g) − 2c (d − g)

g
, α1 ≡ a + G1

G1
, β1 ≡ d

G1
, γ1 ≡ c

G1
; (2.28)

G2 ≡ g (2d − g) (d − c)

g (d − c) + 2c (d − g)
, α2 ≡ a + G2

G2
, β2 ≡ d

G2
, γ2 ≡ c

d − c
; (2.29)

G3 ≡ (g (2d− g)− 2c (d− g)) d

gd + 2c (d − g)
, α3 ≡ a + G3

G3
, β3 ≡ c (d + G3)

dG3
, γ3 ≡ d

G3
; (2.30)

G4 = −d + g +
√

(2d − g)g, α4 =
a + G4

G4
, β4 = γ4 =

d + G4

2G4
. (2.31)

A word of caution is in order regarding the off-shell scenario of figure 1(b), i.e. eq. (2.31). In

that case, particle B is far off-shell and its mass mB is not among the relevant parameters

for the kinematic endpoints,9 so that we only need to determine three unknowns: mA, mC

and mD. At the same time, we have one fewer independent inputs within our original set

{a, c, d, g}, since eqs. (2.20) and (2.21) imply the additional relation

c =
1

2
d. (2.32)

For the purpose of inversion, in the off-shell case we chose to omit c and work only with

{a, d, g}, which are the only three endpoints appearing in eq. (2.31). Finally, the appearance

of the square root in (2.31) should not be a problem, since in the off-shell scenario the ratio
d
g

is bounded by

1 <
d

g
< 2 +

√
2 . (2.33)

The set of analytical inversion formulas (2.23)–(2.26), (2.28)–(2.31) is the first main result

of this paper.

9Of course, (2.24) should only be used in the on-shell case.
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3 Duplication analysis

Armed with the analytical results from the previous section, we are now ready to address the

problem of duplicate solutions and the potential discrete ambiguities in the determination

of the mass spectrum. Our procedure will be very simple and straightforward. We shall

consider the four (color-coded) parameter space regions Ri in figure 2 one at a time, and

in each case we shall ask the question: Is it possible that identically the same values of

the endpoints {a, c, d, e} can be obtained from another type of mass spectrum belonging

to a different parameter space region Rj, with j 6= i? And if the answer is “yes”, we

shall then ask two follow-up questions: First, exactly in which parts of Ri and Rj does

this duplication occur? Second, will the ambiguity get resolved by utilizing the additional

endpoint measurement b at our disposal?

Operationally we proceed as follows. First, it is important to realize that the “forward”

analytical formulas of section 2.1 provide a map Fi of the corresponding parameter space

region Ri onto the space of values of the kinematic endpoints:

{mA,mB ,mC ,mD}i
Fi7−→ {a, c, d, e} , (3.1)

or equivalently, using the reparametrization (2.7)

{mD, RAB , RBC , RCD}i

Fi7−→ {a, c, d, e} . (3.2)

Similarly, the inverse formulas from section 2.2 provide an inverse map F−1
i from the space

of kinematical endpoints back onto the mass parameter space:

{a, c, d, e}
F−1

j7−→ {mD, RAB , RBC , RCD}j . (3.3)

The composite of the two maps (3.2) and (3.3) for i 6= j, is a transformation

Tij ≡ F−1
j · Fi (3.4)

relating parameter space points belonging to two different regions, Ri and Rj, yet resulting

in identical kinematical endpoints {a, c, d, e}:

{mD, RAB , RBC , RCD}i

Tij7−→
{

m′
D, R′

AB , R′
BC , R′

CD

}

j
. (3.5)

The transformation Tij described in (3.5) will serve as the basis of our duplication analysis.

The exact analytical formulas for this mapping can be trivially obtained from our analytical

results above in section 2, but are rather lengthy and we shall not present them here explic-

itly. However, we note that in the three on-shell cases i = 1, 2, 3 they have the generic form

R′
AB = fAB(RAB , RBC), (3.6)

R′
BC = fBC(RAB , RBC), (3.7)

R′
CD = fCD(RAB , RBC , RCD), (3.8)

m′
D = mD fD(RAB , RBC , RCD), (3.9)
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where fAB, fBC , fCD and fD are the functions defining the transformation Tij . One impor-

tant feature of the Tij map (3.6)–(3.9) is that it transforms the 2-dimensional subspace of

dimensionless parameters {RAB , RBC} into itself. Notice that RAB and RBC are precisely

the parameters defining the four regions Ri in figure 2. Therefore, for the purposes of our

duplication analysis it is sufficient to consider the simpler transformation of

{RAB , RBC}i

Tij7−→
{

R′
AB, R′

BC

}

j
(3.10)

given by eqs. (3.6) and (3.7) only, instead of the more general mapping (3.5) given by all

four eqs. (3.6)–(3.9).

We are now ready to answer the main question posed at the beginning of this section:

does a consistent mapping (3.10) exist for some pair of regions Ri and Rj? Note that

the transformation (3.10) is not necessarily always well defined: consistency requires that

the obtained values of {R′
AB , R′

BC}j
belong to Region Rj, which is not automatically

guaranteed and must be explicitly checked. To put this in more formal terms, we are

only interested in those cases where the intersection of the image of region Ri under the

transformation Tij and the intended target region Rj is a non-empty set:

{Tij (Ri)} ∩ {Rj} 6= ∅. (3.11)

In order to find all such occurrences, we consider all possible transformations Tij with i 6= j

and enforce the consistency check (3.11).

We begin with the on-shell case (i, j = 1, 2, 3), where there are 6 possible mappings

Tij . For the purposes of finding the duplicated portion of parameter space, it is sufficient

to consider only 3 of them, which for convenience of illustration we choose as T13, T23 and

T21. The corresponding results are shown in figures 3 and 4. Figure 3 shows the effect

of the transformation T13 : R1 7−→ R3 (top two panels) and T23 : R2 7−→ R3 (bottom

two panels), while figure 4 shows the map T21 : R2 7−→ R1. In both figures, the color-

shaded areas in the left (right) panels exhibit the original regions Ri (the intended target

regions Rj). The cross-hatched areas in the right panels depict the actual image Tij(Ri)

of the Ri region under the transformation Tij. For example, in figure 3 T13 maps the

whole green-shaded region ABD on the left into the green-hatched region A′B′D′ on the

right, while in figure 3 (figure 4) T23 (T21) maps the whole magenta-shaded region BCD on

the left into the magenta-hatched region B′C ′D′ on the right. In accordance with (3.11),

duplication occurs whenever the right panels in figures 3 and 4 exhibit an overlap between

the cross-hatched area of the image and the solid color-shaded area of the intended target.

We see that duplication occurs in the case of T13 and T23, but not for T21, although in the

latter case points which are on opposite sides, but close to the boundary line BD will give

rather similar values for the measured kinematic endpoints {a, c, d, e}.
At this point one may wonder whether the result of figure 3 is sufficient to prove

the existence of duplication. Indeed, figure 3 tells us nothing about the remaining two

parameters RCD and mD and more specifically about their transformed values R′
CD and

m′
D under the mappings T13 and T23. Duplication will in fact not occur, if R′

CD and m′
D

turn out to be unphysical, for example, if R′
CD < 0, R′

CD > 1 or (m′
D)2 < 0. Unfortunately,
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Figure 3. The maps T13 : R1 7−→ R3 (top two panels) and T23 : R2 7−→ R3 (bottom two panels),

which are implied by eq. (3.10). In both cases the target region R3 is shaded in cyan. Under

T13, the green-shaded region ABD in the top left panel transforms into the green-hatched region

A′B′D′ of the top right panel. Under T23, the magenta-shaded region BCD in the bottom left

panel transforms into the magenta-hatched region B′C′D′ of the bottom right panel. In both cases,

the transformed (primed) region falls completely within the boundaries of the intended target (R3).

a closer inspection of (3.8) reveals that

fCD(RAB , RBC , RCD = 0) = 0, (3.12)

fCD(RAB , RBC , RCD = 1) = 1, (3.13)

for any values of RAB and RBC , so that RCD is always consistently mapped within its

definition region. Similarly, we find no problem with eq. (3.9). Therefore, the duplication

examples shown in figure 3 truly represent a problem.

We then perform a similar analysis involving the off-shell region R4 and find no occur-

rences of duplication, which is not surprising, since the off-shell case is more restricted, due

to (2.32). Therefore, figures 3 and 4 already provide the final answer to the first question

posed at the beginning of this section: which portions of the mass parameter space (2.7)

exhibit exact duplication? We can summarize our result as follows:

For every point with RAB < RBC < 1 (i.e. in region R1 or R2) and arbitrary

values of RCD and mD, there exists another parameter space point with RBC <

RAB < 1 and certain (in general different) values of RCD and mD, which would

result in identical predictions for all four kinematic endpoints {a, c, d, e}.
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Figure 4. The same as figure 3, but for the map T21 : R2 7−→ R1, where the intended target is the

green-shaded region R1. Under T21, the magenta-shaded region BCD in the left panel transforms

into the magenta-hatched region B′C′D′ of the right panel. The image B′C′D′ has no overlap with

its intended target R1, except along the BD = B′D′ boundary, which is left invariant under the

T12 transformation.

The reverse statement is not true: not every point with RBC < RAB < 1 (i.e. in region R3)

is subject to duplication. Referring to the right panels of figure 3, only the cross-hatched

portions of the cyan-shaded region R3 are duplicated.

Having found duplication examples for the limited set of measurements {a, c, d, e},
it is now time to ask whether the additional measurement of the b kinematic endpoint

will help. We find that, as might have been expected, whenever the b measurement is

independent of the others, the duplication goes away. Unfortunately, as already mentioned

in the discussion following eq. (2.17), in the three subregions (3,1), (3,2) and (2,3), b is

not an independent measurement, and thus the duplication will persist even for the full

set of 5 measurements {a, b, c, d, e}! In terms of the subregions of figure 2, the two cases of

duplication found in figure 3 can then be summarized as

(3, 1)
T13−→ (2, 3), (3.14)

(3, 2)
T23−→ (2, 3). (3.15)

As long as the original parameter space point and its image belong to these particular

subregions, the resulting two sets of endpoints (1.7) will be identical.

We caution the reader not to get the impression from (3.14) and (3.15) that every

parameter space point in regions (3,1), (3,2) and (2,3) is duplicated with something. Recall

that the boundaries of the dangerous subregions (3,1), (3,2) and (2,3) depend on RCD, thus

the range of RCD values resulting in duplication will now be restricted. Therefore, in the
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Figure 5. The minimum value Rmin
CD(RBC , RAB) required for duplication, as a function of RBC

and RAB. The white asterisks (circles) mark the duplicate pair of points P31 and P23 (P32 and P ′
23)

in table 2.

presence of the additional b measurement, our previous statement about duplication is now

modified as follows:

For every point with RAB < RBC < 1 and any mD, there exists a range of RCD

for which exactly the same values of the five kinematic endpoint measurements

{a, b, c, d, e} can also be obtained from a different parameter space point with

RBC < RAB < 1 and some other (generally different) values of RCD and mD.

We shall now describe the duplicated parameter space implied by (3.14) and (3.15) a

bit more quantitatively. As we just mentioned, for any given point in the (RBC , RAB) plane,

there may exist a range of values for RCD which would cause duplication. Let us denote the

minimum and maximum values of that range by Rmin
CD and Rmax

CD , correspondingly. Clearly,

both Rmin
CD and Rmax

CD are in general functions of RBC and RAB. Then, the “duplicated”

parameter space can be simply described as the set of all points {RAB , RBC , RCD}, which

satisfy the two inequalities

Rmin
CD(RBC , RAB) < RCD < Rmax

CD (RBC , RAB). (3.16)

If, on the other hand, the values of RBC and RAB are such that duplication does not occur

for any value of RCD, we can simply take Rmin
CD = Rmax

CD , resulting in a set of zero measure

for (3.16).

Now, in order to delineate the duplicated parameter space, we only need to supply its

boundaries Rmin
CD(RBC , RAB) and Rmax

CD (RBC , RAB). Our analysis reveals that within the

duplication region we always find

Rmax
CD (RBC , RAB) = 1, (3.17)
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while the function Rmin
CD(RBC , RAB) is plotted in figure 5. Duplication does not occur in the

uniformly red region in the upper left corner, so there we choose to plot Rmin
CD = Rmax

CD = 1,

in accordance with our convention. Within the rainbow-colored region in figure 5, dupli-

cation will exist for any value of mD, as long as RCD is larger than the Rmin
CD value shown

in the figure, i.e. for

Rmin
CD(RBC , RAB) < RCD < 1, (3.18)

where we have made use of (3.17). Figure 5 reveals that the duplication region is typically

characterized by a rather high10 value of RCD = m2
C/m2

D. This implies that in order

to have duplication, particle D cannot be too much heavier than particle C. This situ-

ation does not often arise in typical SUSY models, where D is a squark q̃ and C is the

second-lightest (wino-like) neutralino χ̃0
2. In models with a high SUSY breaking scale like

SUGRA, the Renormalization Group Equation (RGE) running tends to split the squark

and electroweak gaugino masses, so that the hierarchy mD ∼ mC is rather unlikely. On

the other hand, minimal UED models predict a rather degenerate spectrum, since the mass

splittings arise mostly at the loop level, so that mD ∼ mC is rather natural in this case [8].

As an illustration of the whole duplication discussion so far, let us now choose two

specific examples of duplicate mass spectra, one for the case of (3.14) and another for the

case of (3.15). The corresponding input masses and mass ratios, as well as the resulting

kinematic endpoints, are shown in table 2. The first five kinematic endpoints shown in

the table were already discussed, while the rest are new and will be introduced below in

sections 4 and 5. As an application of our previous results, let us outline our procedure

of selecting each pair of study points in table 2. Let us start with the case of (3.14).

Since we know from figure 5 that the whole region (3,1) is duplicated, it is convenient to

first choose the point from that region. We select nice round numbers like RAB = 0.4

and RBC = 0.8. This choice is indicated in figure 5 with the white asterisk inside region

R1. Then figure 5 shows that Rmin
CD = 0.686, therefore we choose a somewhat larger value:

RCD = 0.7. This choice of RAB, RBC and RCD already guarantees duplication for any

value of mD, and we choose mD = 500 GeV (another nice round number). The resulting

masses mA, mB and mC can be readily computed in terms of mD and the mass ratios.

We call the resulting spectrum “study point P31”, which is listed in the second column of

table 2. Given P31, one can use the transformation T13 to obtain the matching spectrum in

region (2,3), which is listed in the third column of table 2 under the name of “study point

P23”. In the case of (3.15), we follow a similar procedure, except we start with a point in

region R2 (indicated with a white circle in figure 5) and then use the T23 transformation

to obtain the corresponding point in region (2,3). The two resulting mass spectra (called

P32 and P ′
23) are given in the fourth and fifth column of table 2, respectively.

In the on-shell case the parameters {RAB , RBC , RCD} belong to a unit cube, due to

the restrictions (2.5). The volume of the unit cube is 1. Figure 5 then allows us to cal-

culate the volume fraction of this unit cube which corresponds to a duplicated parameter

space region. The result that we find is 0.158. Then one might be tempted to say that if

10The minimum value of RCD that we find over the whole parameter region in figure 5 is RCD = 0.4 and

is found at RBC = 1, RAB = 0.
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R1 ↔ R3 R2 ↔ R3

(3,1) (2,3) (3,2) (2,3)

Variable P31 P23 P32 P ′
23

mA (GeV) 236.643 915.618 126.491 241.618

mB (GeV) 374.166 954.747 282.843 346.073

mC (GeV) 418.33 1083.10 447.214 554.133

mD (GeV) 500.00 1172.57 500.00 610.443

RAB 0.400 0.920 0.200 0.487

RBC 0.800 0.777 0.400 0.390

RCD 0.700 0.853 0.800 0.824

Rmin
CD 0.686 0.845 0.774 0.800

mmax
ll (GeV)

√
a 145 310

mmax
jll (GeV)

√
b 257 369

mmax
jl(lo) (GeV)

√
c 122 149

mmax
jl(hi) (GeV)

√
d 212 200

mmin
jll(θ> π

2
) (GeV)

√
e 132 248

mmax
jlf

(GeV)
√

f 212 127 200 183

m
(p)
jlf

(GeV)
√

p 190 112 126 115

mmax
jln

(GeV)
√

n 122 212 173 200

mmax
jl(eq) (GeV)

√
q NA 122 149 149

mjll(+)(0) (GeV)
√

s 226 240 214 230

mjll(+)(at) (GeV)
√

t 263 257 374 369

mjll(+)(aon) (GeV)
√

u 257 257 369 369

mjll(−)(aon) (GeV)
√

v 190 193 355 360

mjll(+)(aoff) (GeV)
√

w 256 243 372 367

Table 2. Two examples of exact duplication as implied by (3.14) and (3.15). The pairs of study

points P31 and P23, as well as P32 and P ′
23, exhibit identical values for all five kinematic endpoints

mmax
ll , mmax

jl(lo), mmax
jl(hi), mmax

jll and mmin
jll(θ> π

2
). Point P31 belongs to Region R1, point P32 belongs to

Region R2, while points P23 and P ′
23 belong to Region R3. In figure 5, the duplicate pair of points

P31 and P23 (P32 and P ′
23) is marked with white asterisks (white circles). The second-to-last and last

blocks in the table contain the endpoint measurements which are available from the two-dimensional

distributions (m2
jl(lo), m

2
jl(hi)) and (m2

ll, m
2
jll), discussed below in sections 4 and 5, correspondingly.

new physics like supersymmetry or UED with a cascade decay of the type shown in fig-

ure 1(a) is discovered at the LHC, there would be roughly a 15.8% probability that endpoint

measurements alone would result in a duplicate spectrum, even under ideal experimental

conditions. However, it is rather difficult to justify such probabilistic statements, since

they are not invariant under reparametrizations, and furthermore, they depend on the as-
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sumed (usually uniform) prior for the probability distribution of new physics models in

mass parameter space. Any given model of SUSY breaking, for example, would select a

preferred parameter space within the unit cube, and may lower or increase this naively

calculated probability. The generic mass degeneracy in UED, on the other hand, would

prefer the region RAB ∼ RBC ∼ RCD ∼ 1, and the duplication is much more likely. The

important result from our point of view is that there exists a non-vanishing duplication

region, and this fact alone is sufficient to motivate us to look for alternative methods for

mass determination, which we shall undertake in the following two sections.

4 Kinematic boundary lines for the m
2
jl(lo) versus m

2
jl(hi) distribution

In this section we shall analyze the shape of the two-dimensional invariant mass distribution

d2Γ

dm2
jl(lo) dm2

jl(hi)

, (4.1)

which we imagine plotted as either a scatter plot or a two-dimensional histogram with

m2
jl(lo) on one axis and m2

jl(hi) on the other.11 The purpose of our analysis will be twofold.

On the one hand, we shall be interested whether we can use the shape of this two-

dimensional distribution to resolve the mass spectrum duplication problem encountered in

the previous section. But more importantly, we shall investigate what additional kinematic

endpoint measurements besides those already considered in (1.7), may become available

in this case.

Recall that the variables mjl(lo) and mjl(hi) were introduced in eqs. (1.1) and (1.2)

as a way to deal with the ambiguity in the experimental identification of the “near” and

“far” leptons l±n and l∓f in figure 1. It is therefore not very surprising that the shape of the

mjl(lo) versus mjl(hi) distribution (4.1) that we are interested in, is very closely related to

the corresponding m2
jln

versus m2
jlf

distribution

d2Γ

dm2
jln

dm2
jlf

. (4.2)

In principle, both distributions (4.1) and (4.2) depend not only on the mass spectrum, but

also on the spins and on the chiralities of the coupling constants of the particles A, B, C

and D involved in the cascade [67, 68, 80]. However, the location and the shape of the

boundary lines in the scatter plots (4.1) and (4.2) are determined purely by kinematics, and

do not depend on the spin and type of couplings. To the extent that we are only interested

in these boundary lines, it is therefore sufficient to ignore spin effects and consider only pure

phase space decays, in which case the analytical results for the distributions (4.2) and (4.1)

are in principle already available [30]. From now on, the term “shape” will therefore refer

to the location and shape of the boundary lines, and will otherwise have nothing to do

with the probability density of the two-dimensional distributions such as (4.1) or (4.2).

11In practice, as we shall demonstrate below, it may be more convenient to plot the linear masses

mjl(lo) and mjl(hi) on the two axes, but use a quadratic power scale instead of the conventional linear or

logarithmic scales.
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Figure 6. The generic shape ONPF of the bivariate distribution (4.2) in the (m2
jln

, m2
jlf

) plane.

In the on-shell case, the shape of the m2
jln

versus m2
jlf

invariant mass distribution (4.2)

is extremely simple, and is illustrated in figure 6. The scatter plot in the (m2
jln

,m2
jlf

) plane

fills the right-angle trapezoid ONPF , whose corner points are defined as follows. Point

O is simply the origin of the coordinate system. Point N (for “near”) lies on the m2
jln

axis, and its coordinate is nothing but the maximum possible value of the jet-near lepton

invariant mass

n ≡
(

mmax
jln

)2
= m2

D (1 − RCD) (1 − RBC) , (4.3)

which was already introduced in eq. (2.12). Similarly, point F (for “far”) lies on the m2
jlf

axis, and its coordinate is nothing but the maximum possible value of the jet-far lepton

invariant mass

f ≡
(

mmax
jlf

)2
= m2

D (1 − RCD) (1 − RAB) , (4.4)

which was already defined in eq. (2.13). Finally, the point P is the most important of the

four corners, since it defines the actual shape of the trapezoid, once points N and F are

fixed. The coordinates of point P in the (m2
jln

,m2
jlf

) plane are (n, p), where n was already

defined in (4.3), while p is a new quantity:

p ≡
(

m
(p)
jlf

)2
≡ fRBC = m2

D (1 − RCD)RBC (1 − RAB) . (4.5)

Since N and P share the same m2
jln

coordinate n, point P always lies directly above point

N . At the same time, the definition of p implies that

p < f , (4.6)

so that point P always lies lower than point F , as illustrated in figure 6. Finally, in Regions

R2 and R3, there is one more special point, Q, which can be seen in figure 6: it is the
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point where the FP side of the trapezoid intersects the 45◦ line m2
jln

= m2
jlf

. The two

coordinates of point Q are equal by definition, and are given by

q ≡
(

mmax
jl(eq)

)2
= m2

D (1 − RCD)
1 − RAB

2 − RAB
, (4.7)

which is nothing but the quantity previously defined in eq. (2.14). The four quantities n,

p, f and q just introduced are not all independent, but obey the relation

f

q
= 1 +

f − p

n
. (4.8)

With those conventions, the trapezoid ONPF can be equivalently defined through the

parametric equation of the boundary line segment FP . A convenient choice for the line

parameter is the running value of m2
jln

. Then the parametric equation of the line FP is

given by

FP : m2
jlf

(m2
jln

) = f − f − p

n
m2

jln
. (4.9)

In terms of this parametrization, the three special m2
jlf

values introduced in figure 6 are

given as follows:

f = m2
jlf

(0) , (4.10)

p = m2
jlf

(n) , (4.11)

q = m2
jlf

(q) . (4.12)

The last equation is exactly the relation (4.8).

The color-coded regions in figure 6 show the allowed locations of point P , and are

in one-to-one correspondence with the color-coded parameter space regions of figure 2 (in

both cases we use the same color coding). This correspondence is most easily seen as

follows. First, note that the two white areas in figure 6 are not accessible to point P . The

region with m2
jlf

> f is forbidden due to the relation (4.6). Similarly, the white triangular

area near the origin, defined by

m2
jlf

< f − m2
jln

(4.13)

is also not allowed, which can be seen by using the inequality

p ≥ f − n , (4.14)

following from the defining relations (4.3)–(4.5). Therefore, point P must belong to one of

the three colored regions in figure 6. As can be seen from the figure, these three regions

are distinguished based on the value of n relative to f and p: recall that eq. (4.6) already

determines the hierarchy p < f , so that for n there are only three possible options: n can

be smaller than p, n can be larger than f , or n can fall in between p and f . Let us consider

each case in turn.

1. The case n < p < f . Point P then lies somewhere within the green-shaded area in

figure 6. Using (4.3)–(4.5), it is easy to see that the conditions n < p < f imply

n < p < f =⇒ 1

2 − RAB
< RBC < 1 , (4.15)
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which was precisely the defining relation for region R1 in figure 2. Therefore, in

figure 6 we have labelled and color-coded the area with n < p < f to match the

notation for region R1 used in figure 2.

2. The case p < n < f . In this case point P would belong to the magenta-shaded

triangular area in figure 6. The conditions p < n < f now imply

p < n < f =⇒ RAB < RBC <
1

2 − RAB
, (4.16)

which is the definition of region R2 in figure 2. Once again, we label and color-code

this region to match the notation used in figure 2.

3. The case p < f < n. Now the point P should fall somewhere within the cyan-

shaded semi-infinite rectangular strip in figure 6. Using (4.3)–(4.5), the constraints

p < f < n now translate into

p < f < n =⇒ 0 < RBC < RAB , (4.17)

which is the definition of region R3 in figure 2, again justifying the notation and

color-coding used in figure 6.

Unlike the three on-shell cases just discussed, the off-shell scenario of figure 1(b) should be

handled with care, since the “near” and “far” lepton distinctions become meaningless in

that case. Nevertheless, the off-shell scenario can still be represented in figure 6, and in fact

this representation is unique: there is a single allowed location for point P at n = f and

p = 0. In figure 6 this unique location is indicated with a yellow-shaded circle, which corre-

sponds to the whole yellow-shaded region R4 in figure 2. In other words, in the off-shell case

we can randomly assign “near” and “far” labels to the two leptons in each event, and then

the shape ONF of the resulting (m2
jln

,m2
jlf

) scatter plot will be an isosceles right triangle.

From the preceding discussion it should be clear that the two-dimensional theoretical

distribution (4.2) contains a great deal of useful information: its shape uniquely identifies

the on-shell parameter space region Ri, and yields the four measurements {n, f, p, q} given

in eqs. (4.3)–(4.5) and (4.7) instead of the usual two (mmax
jl(lo) and mmax

jl(hi)). Ideally, one would

like to preserve and subsequently extract this additional information from the experimen-

tally observable two-dimensional distribution (4.1) as well. We shall now show that this is

in fact possible, using the simple intuitive understanding of the shape exhibited in figure 6.

The key is to realize that the reordering (1.1) and (1.2) of the (m2
jln

,m2
jlf

) pair into

a (m2
jl(lo),m

2
jl(hi)) pair in geometrical terms simply corresponds to “folding” the trapezoid

ONPF in figure 6 along the 45◦ line m2
jln

= m2
jlf

. This procedure is shown pictorially in

figure 7, where for illustration we use an example from region R3, i.e. p < f < n. Panel (a)

shows the trapezoidal shape of the original m2
jln

versus m2
jlf

invariant mass distribution

from figure 6. Now suppose that we want to convert this (m2
jln

,m2
jlf

) scatter plot into a

(m2
jl(lo),m

2
jl(hi)) scatter plot, simply by reinterpreting the m2

jln
axis as m2

jl(lo) and the m2
jlf

axis as m2
jl(hi). From that point of view, the trapezoid ONPF in figure 7 divides into two

adjacent regions: OQF (blue-shaded) and ONPQ (red-shaded). Within the blue-shaded
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Figure 7. Obtaining the shape of the m2
jl(lo) versus m2

jl(hi) bivariate distribution by folding the

m2
jln

versus m2
jlf

distribution across the line m2
jln

= m2
jlf

. This particular example applies to region

R3. For the other three regions, refer to figures 8(a), 8(b) and 8(d).

area OQF we have m2
jln

< m2
jlf

, so that the coordinate pair (m2
jln

,m2
jlf

) can be directly

identified with (m2
jl(lo),m

2
jl(hi)). Thus the blue-shaded area OQF in panel (a) remains un-

changed and appears identically in panel (b), where it is marked with a blue cross-hatch.

In contrast, within the red-shaded area ONPQ of panel (a), the coordinates m2
jln

and m2
jlf

are in the wrong order, and need to be reversed when going to the (m2
jl(lo),m

2
jl(hi)) scatter

plot of panel (b). In layman terms, this reversal corresponds to “folding” the trapezoid

ONPF along the 45◦ line OQ, as shown in figure 7. The resulting image ON ′P ′Q in

figure 7(b) is then overlayed on the original region OQF . We see that any (m2
jl(lo),m

2
jl(hi))

scatter plot will therefore exhibit two characteristic types of population density. For exam-

ple, in the blue-hatched red area of figure 7(b) we expect the density of points to roughly

double, since the folded distribution ON ′P ′Q is overlaid on top of the existing distribution

OQF underneath. In figure 8 below, we shall mark such “double-density” regions with

a blue cross-hatch in addition to the solid red shading. In contrast, region FQP ′N ′ in

figure 7(b) is a “single density” region, since the folded distribution happened to fall onto

empty space, where originally there were no points to begin with. A single density region

can also be obtained when portions of the original (m2
jln

,m2
jlf

) scatter plot are not overlaid

in the process of folding. In either case, we shall denote a single-density region by a solid

(red) color-shading, but no cross-hatch.

We are now ready to apply the intuition gained from figures 6 and 7 and identify the

characteristic shapes of the (m2
jl(lo),m

2
jl(hi)) distribution for each parameter space region

Ri. Our results are displayed in figure 8, where we show the four characteristic shapes

for each case: the on-shell cases of (a) Region R1, (b) Region R2, (c) Region R3, and

the off-shell case of (d) Region R4. Each panel shows the typical shape (red-shaded) of

the resulting (m2
jl(lo),m

2
jl(hi)) distribution, after the “folding” in figure 7. Blue-hatched
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jl(lo) versus m2
jl(hi) for each of the four

parameter space regions: (a) Region R1, (b) Region R2, (c) Region R3 and (d) the off-shell case

of Region R4. Each panel shows the typical shape (red-shaded) of the resulting (m2
jl(lo), m

2
jl(hi))

distribution, after the “folding” in figure 7. Blue-hatched (unhatched) areas correspond to double-

density (single-density) regions. Each panel also shows the original location of the point P in the

(m2
jln

, m2
jlf

) plot, as well as the allowed positions of point P , following the color conventions of

figures 2 and 6.

(unhatched) areas correspond to double-density (single-density) regions. In addition, we

show the original location of the point P in the (m2
jln

,m2
jlf

) plot. The allowed positions of

point P in each case are color-shaded, following the color conventions of figures 2 and 6.

The nice feature of all the plots in figure 8 is that they are composed entirely of straight

lines. This is a consequence of the fact that the original trapezoid in figure 6 is made up

of straight lines, and then the “folding” of figure 7 does not curve the boundaries. Notice

also the presence of internal kinematic boundaries, marking abrupt changes in the density

of the distribution, e.g. O′N ′ in figure 8(a), QHN ′ in figure 8(b) and QF in figure 8(c).

It is clear from figure 8 that the shape of the (m2
jl(lo),m

2
jl(hi)) scatter plot allows us to

uniquely determine the parameter space region at hand. For example, the typical shape
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for Region R1, exhibited in figure 8(a), consists of a right-angle triangular region OO′N ′ of

double density and a right-angle trapezoidal region N ′O′PF of single density. In this case,

point P is directly observable, and its coordinates immediately yield the quantities n and p

defined in (4.3) and (4.5). In addition, one can also measure the location f of point F along

the m2
jl(hi) axis, given by eq. (4.4). This gives a total of three independent measurements:

n, p and f , which should be ordered as n < p < f , in accordance with (4.15). Now we

can clearly see the benefit of considering the two-dimensional (m2
jl(lo),m

2
jl(hi)) distribution

as opposed to the two individual one-dimensional distributions m2
jl(lo) and m2

jl(hi). Those

one-dimensional distributions are obtained by projecting the (m2
jl(lo),m

2
jl(hi)) scatter plot

shown in figure 8(a) onto the two axes. It is easy to see from figure 8(a) that in this case

the endpoint of the one-dimensional m2
jl(lo) distribution will be given by c = n, while the

endpoint of the one-dimensional m2
jl(hi) distribution will be given by d = f , and neither of

those will reveal the quantity p. In contrast, p can be easily identified on the scatter plot,

and provides an additional independent measurement.

The case of Region R3, which is shown in figure 8(c), is rather similar: the double-

density region is still a triangle (OQF ), while the single-density region is a quadrilateral

(FQP ′N ′). This time instead of point P we can clearly see its image P ′, whose coordinates

nevertheless still reveal the values of n and p. Point F is now hidden within the scatter

plot, but may still be identifiable, since it corresponds to an abrupt change in density of

points. Finally, now we have an additional measurement q of point Q, which is where the

original line segment FP was folded in the reordering process of eqs. (1.1), (1.2). As a

result, in region R3 we have a total of 4 measurements of kinematic endpoints, n, p, f and

q, ordered as follows: p < q < f < n (see also eq. (4.17)). Later, when we project onto the

two axes, the endpoint of the one-dimensional m2
jl(lo) distribution will be given by c = q,

while the endpoint of the one-dimensional m2
jl(hi) distribution will be given by d = n. This

now leaves out two additional potential measurements, p and f , which can be accessed on

the two-dimensional scatter plot.

In the third on-shell case of Region R2, shown in figure 8(b), the shape is more complex:

the double density region is now a quadrilateral OQHN ′, while there are two disjoint single

density triangular regions QP ′H and N ′HF . The point H appears on the intersection of

the original FP boundary of the (m2
jln

,m2
jlf

) scatter plot in figure 6 and the (horizontal)

image P ′N ′ of the (vertical) PN boundary in figure 6. Once again, the coordinates of

point P ′ reveal p and n, while points F and Q reveal f and q, correspondingly. In region

R2, therefore, there are 4 potential measurements, p, n, f and q, ordered as follows:

p < q < n < f . When the scatter plot of figure 8(b) is projected onto the axes, the

endpoint of the one-dimensional m2
jl(lo) distribution will be given by c = q, while the

endpoint of the one-dimensional m2
jl(hi) distribution will be given by d = f . Once again,

this leaves out two additional potential measurements, p and n, which can be extracted

from the two-dimensional scatter plot.

Let us now turn to the off-shell scenario of Region R4, which is represented in fig-

ure 8(d). Because of the symmetry between the “near” and “far” leptons in the off-shell

case, the folded region ONQ has an identical triangular shape as the underlying region

OFQ, so that after the fold the two match perfectly and we obtain a single triangular
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region of double density, and no single-density areas. As can be seen from figure 8(d), the

off-shell scenario offers only one nontrivial endpoint measurement, which can be taken as

f . The latter appears as the endpoint d in the one-dimensional m2
jl(hi) distribution, while

the endpoint c of the other one-dimensional distribution, m2
jl(lo), is then simply given as

c = f/2, in agreement with eq. (2.32).

We have just seen that in the off-shell scenario of figure 1(b) the two-dimensional scat-

ter plot (m2
jl(lo),m

2
jl(hi)) does not yield any additional kinematic endpoint measurements.

However, it can still be helpful in discriminating a potential regional ambiguity which may

arrise as follows. Notice that the triangular double-density shape of the scatter plot in

the off-shell case of figure 8(d) can in principle also be obtained in the on-shell cases of

figure 8(b) and figure 8(c), provided that the image P ′ of point P ends up very close to

point F . In terms of the (m2
jln

,m2
jlf

) scatter plot of figure 6, this situation corresponds to

the on-shell cases of Regions R2 or R3, with point P lying very close to the yellow-shaded

dot representing Region R4. In spite of having the same shape of their boundary lines,

the two scatter plots will be quite different, as they will exhibit a different point density.

In particular, for all three on-shell cases, the pure phase space two-dimensional differential

distribution (4.2) is given by the following (unit-normalized) formula

d2Γ

dm2
jln

dm2
jlf

=
1

n
(

m2
jlf

(m2
jln

)
) =

1

fn − (f − p)m2
jln

, (for RBC < 1). (4.18)

Notice that within the kinematically allowed region, the density is independent of m2
jlf

. In

the limit p → 0, the expression (4.18) becomes singular when m2
jln

→ n. This singularity is

regularized by the width of particle B and the branching fraction for the C → B decay. In

contrast, the corresponding density in the off-shell case is quite different, and in particular

does not exhibit such singular features.

We are now ready to revisit the duplication problem discussed in section 3. We have

just seen that the two-dimensional distribution of m2
jl(lo) versus m2

jl(hi) can help resolve

the duplication in two very different ways. First, the shape of the kinematic boundary

lines in the (m2
jl(lo),m

2
jl(hi)) scatter plot uniquely identifies the region, as shown in figure 8.

Since the duplicate solutions that we found always appear in two different regions, this

is in principle sufficient to eliminate the wrong solution. Secondly, the scatter plots offer

the possibility of additional measurements, and at the very least a measurement of the

quantity p. As can be seen from table 2, the value of p is already different for each pair of

duplicate spectra, and, provided that it can be measured with sufficient precision, can also

be used to remove the ambiguity.

Our conclusions are confirmed by figure 9, which shows the (m2
jl(lo),m

2
jl(hi)) scatter

plots for the four study points from table 2 exhibiting duplication: (a) point P31, (b) point

P23, (c) point P32 and (d) point P ′
23. The figure indeed shows that each pair of duplicate

points has identical values for the endpoints of the separate one-dimensional invariant

mass distributions m2
jl(lo) and m2

jl(hi). However, the shapes of the scatter plots are very

different, and so are the values of the corresponding p endpoints. We therefore conclude

that the duplication encountered in section 3 ceases to be a problem, once we generalize

the analysis to two-dimensional (bivariate) distributions as discussed here.
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Figure 9. Scatter plots of m2
jl(lo) versus m2

jl(hi) for the four study points from table 2 exhibiting

duplication: (a) point P31, (b) point P23, (c) point P32 and (d) point P ′
23. Notice the quadratic

scale used on both axes. The kinematic boundary lines are outlined with the corresponding color

for each region, following the color coding conventions of figures 2 and 6. Each plot has 10,000 data

points. We assume that all particles A, B, C and D are exactly on-shell.

In conclusion of this section, we point out that when the two-dimensional scatter

plots like those in figure 9 are projected onto the axes to obtain the corresponding one-

dimensional distributions of either m2
jl(lo) or m2

jl(hi), the latter often exhibit some pecu-

liar features near their endpoints, which were classified as either “feet” or “drops” in

ref. [30]. The origin of these features is now easy to understand in terms of the original two-

dimensional scatter plot. For example, consider the scatter plots in figures 9(b) and 9(d).

When projected onto the m2
jl(hi) axis, both of them will exhibit a classic “drop” at the

m2
jl(hi) endpoint, which is simply due to the flat upper boundary P ′N ′ in figure 8(c). Simi-

larly, the projection of the scatter plot in figure 9(c) onto the m2
jl(hi) axis will exhibit a clas-

sic “foot” extending from n to f . The “foot” can be easily understood in terms of the generic

shape of figure 8(b), where it arises from the projection of the single density area N ′HF .
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5 Kinematic boundary lines for the m
2
ll

versus m
2
jll

distribution

Following the logic of the previous section, we shall now proceed to analyze the two-

dimensional distribution
d2Γ

dm2
jll dm2

ll

, (5.1)

whose generic shape OV US is shown in figure 10. The kinematic boundary lines of the

scatter plot (5.1) generally consist of four segments. The upper (SU) and lower (OV )

curved boundaries are parts of a hyperbolic curve OWS, while the left (OS) and right (UV )

boundaries are straight lines. Therefore, in order to describe the shape of the (m2
ll,m

2
jll)

scatter plot, it is sufficient to provide the parametric equations for the upper and lower

curved boundaries SW and OW , plus the location of the vertical line UV . In analogy

with (4.9), we choose the variable on the horizontal axis, in this case m2
ll, as the line

parameter describing the hyperbola OWS. Then the upper boundary line SUW is given

by the parametric equation [33]

m2
jll(+)(m

2
ll) =

1 + RCD

2

m2
ll

RCD
+

1

2
m2

D(1 − RCD)(1 − RAC)

+
1 − RCD

2

{

[(

m2
ll

RCD

)

− m2
D(1 + RAC)

]2

− 4m4
DRAC

}
1
2

, (5.2)

while the lower boundary line OV W is given by [33]

m2
jll(−)(m

2
ll) =

1 + RCD

2

m2
ll

RCD
+

1

2
m2

D(1 − RCD)(1 − RAC)

−1 − RCD

2

{

[(

m2
ll

RCD

)

− m2
D(1 + RAC)

]2

− 4m4
DRAC

}
1
2

. (5.3)

The vertical straight line segment UV is in general located at m2
ll = a, where a is the value

of the dilepton invariant mass endpoint (mmax
ll )2 already introduced in section 2.1. As we

saw in section 2.1, the expression for a = (mmax
ll )2 depends on whether we are dealing with

the on-shell scenario of figure 1(a) or the off-shell scenario of figure 1(b). Therefore we

shall now introduce separate notation for the endpoint a in each of these two cases. In the

on-shell scenario of figure 1(a) we shall use aon to designate our previous eq. (2.8)

aon ≡ m2
D RCD (1 − RBC) (1 − RAB), (5.4)

while in the off-shell scenario of figure 1(b) we shall use aoff for the previous result (2.18)

aoff ≡ m2
D RCD (1 −

√

RAC)2. (5.5)

From these two equations, it is not difficult to see that

aon ≤ aoff , (5.6)
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Figure 10. The generic shape OV US of the bivariate distribution (5.1) in the (m2
ll, m

2
jll) plane.

as indicated in figure 10. As an aside, we mention that with the help of eqs. (5.4) and (5.5)

it is easy to show that the equal sign in (5.6) is achieved when RAB = RBC , i.e. when

the on-shell spectrum happens to lie exactly on the border between regions R2 and R3

in figure 2. In physical terms this means that the mass mB of particle B is equal to the

geometric mean of mA and mC :

mB =
√

mAmC ⇒ aon = aoff . (5.7)

This represents another potential source of confusion in extracting the mass spectrum — the

measurement of the dilepton invariant mass endpoint a alone tells us nothing about whether

the intermediate particle B is on-shell or off-shell, leading to two possible solutions [28].

Fortunately, with the inclusion of the additional measurements c, d and e, we did not

encounter this type of duplication in the course of our analysis in section 3.

Returning now to our discussion of the (m2
ll,m

2
jll) scatter plot in figure 10, eq. (5.6)

implies that in the on-shell case of figure 1(a), the data points do not fill up the whole

region OWS, but only extend up to the vertical boundary UV . The region to the right

of the UV line is kinematically inaccessible. On the other hand, in the off-shell case of

figure 1(b), the whole region OWS is filled up. The only exception to this rule is the very

special on-shell case of (5.7), when the UV line moves to the very tip W of the hyperbola,

thus allowing the whole region OWS, as if this were an off-shell scenario.

In analogy with our discussion in section 4 of the kinematic boundaries in the two-

dimensional (m2
jl(lo),m

2
jl(hi)) distribution, we now identify several special points along the

hyperbola OWS in figure 10. Point O is simply the origin (0, 0) of the (m2
ll,m

2
jll) coordinate

system. Point W is the tip of the hyperbola, where the upper branch m2
jll(+)(m

2
ll) meets
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the lower branch m2
jll(−)(m

2
ll). By definition, the m2

ll coordinate of point W is aoff , while

its m2
jll coordinate is

w ≡ m2
jll(+)(aoff ) ≡ m2

jll(−)(aoff) = m2
D

(

1 − RCD

√

RAC

)(

1 −
√

RAC

)

. (5.8)

Point S is where the upper kinematic boundary line m2
jll(+)(m

2
ll) intersects the m2

jll coor-

dinate axis. The m2
jll coordinate of point S is therefore

s ≡ m2
jll(+)(0) = m2

D (1 − RCD) (1 − RAC) . (5.9)

Points U and V label the intersections of the vertical boundary UV with the upper and

lower hyperbolic branches (5.2) and (5.3), respectively. They share the same m2
ll coordinate

aon, while their m2
jll coordinates are correspondingly given by

u ≡ m2
jll(+)(aon)

=
1

2
m2

D

[

(1+RCD)(1−RBC)(1−RAB)+(1−RCD)(1−RAC +|RBC−RAB |)
]

, (5.10)

v ≡ m2
jll(−)(aon)

=
1

2
m2

D

[

(1+RCD)(1−RBC)(1−RAB)+(1−RCD)(1−RAC−|RBC−RAB |)
]

. (5.11)

Finally, there is one more special point on the upper branch SUW : it is the point T where

m2
jll(+)(m

2
ll) has a local maximum. The m2

ll coordinate at of point T can be found from

the minimization condition
(

dm2
jll(+)

dm2
ll

)

m2
ll
=at

= 0 (5.12)

and is given by

at ≡ m2
D

(

RCD −
√

RAD

)(

1 −
√

RAD

)

. (5.13)

Then, the m2
jll coordinate t of point T is easily found by substituting (5.13) into (5.2):

t ≡ m2
jll(+)(at) = m2

D

(

1 −
√

RAD

)2
. (5.14)

We should point out that point T as we have defined it here, does not exist in all parameter

space regions. To see this, let us calculate the slope of the upper branch m2
jll(+)(m

2
ll) at

point S:
(

dm2
jll(+)

dm2
ll

)

m2
ll
=0

=
RCD − RAC

RCD(1 − RAC)
. (5.15)

Since the denominator is always positive, the sign of the derivative is determined by the

relative size of RCD and RAC . When RCD < RAC , the slope is negative, and T does

not exist. In that case, the maximum value of m2
jll over the whole scatter plot OV US

is obtained exactly at S, and is given by s in eq. (5.9). Comparing to the first lines in

eqs. (2.9) and (2.19), we see that this happens precisely for the cases of Njll = 1 and

Njll = 5. In contrast, for the other four cases Njll = 2, 3, 4, 6, the slope at point S is
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positive and point T is well defined. However, this does not mean that point T would

then necessarily belong to the scatter plot OV US. In the off-shell case of Njll = 6, point T

clearly belongs to the scatter plot, and the maximum value of m2
jll is given by t in eq. (5.14),

in agreement with the second line in eq. (2.19). However, in the remaining three on-shell

cases Njll = 2, 3, 4 one has to be more careful. Since the scatter plot is then limited by the

UV vertical boundary, point T will be included only if it lies to the left of the UV line, i.e.

we must have

at < aon. (5.16)

Using (5.13) and (5.4), this condition can be equivalently rewritten as

(RBC − RABRCD)(RAB − RBD) > 0. (5.17)

Alternatively, the point T will fall outside the scatter plot, whenever

at > aon, (5.18)

or equivalently,

(RBC − RABRCD)(RAB − RBD) < 0. (5.19)

We see that whether point T is included or not, depends on the sign of the expression

(RBC − RABRCD)(RAB − RBD). (5.20)

Notice that the two factors entering this expression cannot be simultaneously negative: if

that were the case, we would have

RBC − RABRCD < 0 ⇒ m2
B < mA

mD
m2

C

RAB − RBD < 0 ⇒ mA mD < m2
B

}

⇒ mD < mC , (5.21)

which contradicts our basic assumption (2.6). Therefore, whenever one of the two factors

in (5.20) is negative, the other is guaranteed to be positive. Of course, it is also possible that

both factors in (5.20) are positive to begin with. Altogether, this leads to three different

possibilities, which are related to the Njll = 2, 3, 4 cases of eq. (2.9).

• Njll = 2. In this case, the first factor in eq. (5.20) is negative, leading to the following

logical chain

Njll = 2 : RBC − RABRCD < 0 ⇒ RAB − RBD > 0

⇒ (RBC − RABRCD)(RAB − RBD) < 0 ⇒ at > aon, (5.22)

placing point T outside the scatter plot. Then, the maximum value of m2
jll is obtained

at point U and is given by eq. (5.10). Since in this case RBC < RABRCD < RAB ,

the absolute value sign in (5.10) can be resolved as |RBC −RAB| = RAB −RBC and

then eq. (5.10) simplifies to

u = m2
D(1 − RBC)(1 − RABRCD), (5.23)

confirming the result on the second line of eq. (2.9).
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• Njll = 3. In this case, it is the second factor in eq. (5.20) which is negative:

Njll = 3 : RAB − RBD < 0 ⇒ RBC − RABRCD > 0

⇒ (RBC − RABRCD)(RAB − RBD) < 0 ⇒ at > aon. (5.24)

Once again, point T is outside the scatter plot, and the maximum value of m2
jll

is obtained at point U and is given by (5.10). This time, however, RAB < RBD =

RBCRCD < RBC , and correspondingly, |RBC −RAB | = RBC −RAB . Then, eq. (5.10)

simplifies to

u = m2
D(1 − RAB)(1 − RBD), (5.25)

agreeing with the third line of eq. (2.9).

• Njll = 4. This is the case when both factors in eq. (5.20) are positive, leading to

Njll = 4 :
RBC − RABRCD > 0

RAB − RBD > 0

}

⇒ (RBC − RABRCD)(RAB − RBD) > 0

⇒ at < aon. (5.26)

Point T now belongs to the scatter plot, and its coordinate t defined in (5.14) gives

the maximum value of the m2
jll distribution, in agreement with the fourth line of (2.9).

Note that figure 10 now allows us to understand geometrically the physical meaning of

the lower threshold e = (mmin
jll(θ> π

2
))

2 introduced in section 2. If we restrict ourselves only

to points with m2
ll > 1

2aon, i.e. to the right of the dashed line EE′, the one-dimensional m2
jll

distribution will exhibit a lower endpoint, whose value e is given by the m2
jll coordinate of

point E in figure 10. In the on-shell case, e is given by

e ≡ m2
jll(−)(aon/2) =

1

4
m2

D

{

(1 + RCD)(1 − RAB)(1 − RBC) + 2(1 − RCD)(1 − RAC)

−(1 − RCD)
√

(1 + RAB)2(1 + RBC)2 − 16RAC

}

, (5.27)

while in the off-shell case e is given by

e ≡ m2
jll(−)(aoff/2) =

1

4
m2

D(1 −
√

RAC)

{

2RCD(1 −
√

RAC)

+(1 − RCD)

(

3 +
√

RAC −
√

1 + RAC + 6
√

RAC

)}

. (5.28)

It is not difficult to see that eqs. (5.27) and (5.28) are identical to (2.15) and (2.22),

correspondingly.

The newly introduced quantities s, t, u and v can be directly observed experimentally12

on the scatter plot of figure 10. Table 2 lists their square root values for our four duplicate

12In principle, one can also measure indirectly the locations of points W and T , even when they fall outside

the observable scatter plot. Since the analytical expressions (5.2) and (5.3) for the boundary lines are already

known, one can fit them to the observable portions on the scatter plot, and then extrapolate the obtained

analytical fit into the kinematically inaccessible region, thus obtaining the “would-be” positions of T and W .
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Figure 11. The same as figure 9, but for m2
ll versus m2

jll.

study points P31, P23, P32 and P ′
23. As expected, the value of u is matched identically for

each pair. However, the two other directly observable quantities s and v differ, and in princi-

ple can be used to resolve the duplication. This is illustrated in figure 11, where we plot the

two-dimensional distribution (5.1) for each duplicated example: (a) P31, (b) P23, (c) P32 and

(d) P ′
23. Unlike figure 9, here the differences between the scatter plots for each duplicated

pair are only quantitative, and may be difficult to observe in practice. The fact that the

plots look similar is not very surprising, given our earlier discussion. Notice that duplication

occurs only in regions with Njll = 2 or Njll = 3. In both cases, the shape of the (m2
ll,m

2
jll)

scatter plot is rather similar: the slope at point S is positive, and the upper boundary SU

is cut off before it reaches the local maximum at point T . Furthermore, the duplication

analysis ensures that the rightmost vertical boundary UV occurs in the same location aon.
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6 Summary and outlook

We now summarize the main results of the paper and discuss possible directions for future

investigations. Our main results are as follows:

• In section 2.2 we provided analytical inversion formulas which allow the immediate

calculation of the mass spectrum mA, mB, mC and mD in terms of a set of four mea-

sured invariant mass endpoints {a, c, d, e}. Our formulas are valid in all parameter

space regions, since we do not use the endpoint b = mmax
jll , which is problematic in

regions (3,1), (3,2) and (2,3), see eq. (2.17).

• Once the endpoint mmax
jll is eliminated from the discussion, we only need to consider 4

different cases, Ri, i = 1, 2, 3, 4, as illustrated with the color-coded regions in figure 2.

In contrast, previous studies which made use of the mmax
jll endpoint [26, 27, 30] were

forced to consider all 11 different possibilities (Njll, Njl) shown in figure 2.

• We investigated analytically the possibility of finding multiple solutions for the mass

spectrum, even when a perfect experiment can measure the values for all five in-

variant mass endpoints {a, b, c, d, e} with zero error bars. Although we still had to

consider separately each of the four different cases Ri, we found that in most of the

parameter space the spectrum is uniquely determined. Unfortunately, there is also

a certain portion of parameter space, illustrated in figure 5, where one finds an ex-

act duplication, i.e. two very different mass spectra yield identical values for all five

measurements {a, b, c, d, e}. The situation is only going to get worse, once we take

into account the inevitable experimental errors on the endpoint measurements, which

can only proliferate the number of candidate solutions. Our results show that the

conventional method of invariant mass endpoints may not be sufficient and one needs

to look for new fresh ideas.

• The main goal of this paper is to advertise a new approach to the study of the usual

invariant mass distributions. In particular, we point out that the multivariate invari-

ant mass distributions contain a lot more useful information than the individual one-

dimensional histograms, which are usually considered. As two illustrative examples,

we discussed the two-dimensional {m2
jℓ(lo),m

2
jℓ(hi)} distribution in section 4 and the

two-dimensional {m2
ℓℓ,m

2
jℓℓ} distribution in section 5. The former is always bounded

by straight lines (see figure 8), while the latter is bounded by the hyperbola given

by (5.2) and (5.3), and (in the on-shell case only) by the straight line UV in figure 10.

• The two-dimensional distributions exhibit two useful features. First, their shapes,

i.e. the locations and orientations of their boundary lines, are characteristic of the

corresponding parameter space region Ri, as shown in figures 8 and 10. This ob-

servation can be used to identify the relevant parameter space region, and resolve

potential ambiguities in the extraction of the mass spectrum. Second, the boundary

lines exhibit a number of special points, whose coordinates can in principle be mea-

sured, providing additional experimental information about the mass spectrum. For
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example, in the {m2
jℓ(lo),m

2
jℓ(hi)} scatter plots of figure 8 one may identify points F ,

P , N and Q, and correspondingly measure their m2
jl(hi) coordinates, which (in the

on-shell case) are given by

f = m2
D (1 − RCD) (1 − RAB) , (6.1)

p = m2
D (1 − RCD)RBC (1 − RAB) , (6.2)

n = m2
D (1 − RCD) (1 − RBC) , (6.3)

q = m2
D (1 − RCD)

1 − RAB

2 − RAB

. (6.4)

Similarly, on the {m2
ℓℓ,m

2
jℓℓ} scatter plot in figure 10 one may identify the points S,

U , V , E, and (sometimes) T and W . Their m2
jll coordinates are given by

s = m2
D (1 − RCD) (1 − RAC) , (6.5)

u =
1

2
m2

D

[

(1 + RCD)(1 − RBC)(1 − RAB) (6.6)

+ (1 − RCD)(1 − RAC + |RBC − RAB |)
]

,

v =
1

2
m2

D

[

(1 + RCD)(1 − RBC)(1 − RAB) (6.7)

+ (1 − RCD)(1 − RAC − |RBC − RAB |)
]

,

e =
1

4
m2

D

[

(1 + RCD)(1 − RAB)(1 − RBC) + 2(1 − RCD)(1 − RAC) (6.8)

−(1 − RCD)
√

(1 + RAB)2(1 + RBC)2 − 16RAC

]

,

t = m2
D

(

1 −
√

RAD

)2
, (6.9)

w = m2
D

(

1 − RCD

√

RAC

)(

1 −
√

RAC

)

. (6.10)

The advantage of the new approach is apparent from eqs. (6.1)–(6.10). Including

the dilepton invariant mass endpoint a, the set of potential invariant mass endpoint

measurements has now expanded to 11:

{a, f, p, n, q, s, u, v, e, t, w} (6.11)

instead of the original five:

{a, b, c, d, e}. (6.12)

Of course, the endpoints in (6.11) are not independent from each other, since they

are all given in terms of only 4 input parameters (2.7). Nevertheless, it is certainly

preferable to have as many measurements as possible. The redundancy of information

is a virtue, since it helps to improve the precision of the mass determination.

• The inversion formulas may simplify considerably, if we replace e, whose analyt-

ical expression (6.8) is rather complicated, with some of the other measurements

in (6.1)–(6.10). One such example is shown in appendix A, where we start from the

set {a, f, p, n}, and obtain a very simple result (A.11)–(A.14) for the inversion.
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• An important advantage of the two-dimensional approach is that one can readily

resolve the ambiguity between the endpoints of the m2
jlf

and the m2
jln

distributions.

Indeed, notice that the endpoints (6.1) and (6.3), are region-independent, and can

be directly observed from the boundary lines. This removes the need to consider the

different parameter space regions Ri one by one. The possibility of distinguishing

the jln and jlf invariant mass endpoints from two-dimensional scatter plots was also

suggested in refs. [88] and [89], where the {m2
ll,m

2
jl} distribution was used instead.

• Another advantage of the two-dimensional representation of the data is that one can

then perform a fit to the boundary lines of the scatter plot instead of a fit to the end-

points in the one-dimensional distributions. This improves the precision of the mass

determination, as demonstrated in [89] for the SPS1a SUSY benchmark example.

In conclusion, we outline several directions for future investigations.

⋆ Perhaps the most pressing question is whether and how well the method proposed here

will survive the experimental complications of a full-blown analysis including detector

simulation, backgrounds from Standard Model as well as SUSY combinatorics, the

finite widths of the particles B, C and D, the varying population density of the

scatter plots, etc. This is currently under study in the CMS SUSY working group

and results will be presented in a separate publication.

⋆ In this paper we limited ourselves to the analysis of the boundary lines of two-

dimensional distributions. However, the method can be easily generalized by includ-

ing one more dimension and studying the boundary surface of the three-dimensional

distribution (1.9). A similar generalization was already shown to be beneficial in the

case of spin measurements [69].

⋆ One could also consider other choices of two-dimensional distributions, for example

{m2
ll,m

2
jl}, {m2

jl,m
2
jll} [88], or {m2

ll,m
2
jl(lo)}, {m2

ll,m
2
jl(hi)} [89]. Those distributions

also allow to discriminate between the “near” and “far” lepton endpoints, and will

contribute even more data points to the set (6.11).

⋆ One could also generalize the method to a longer decay chain, e.g. one which starts

with a gluino [27].
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A Simple inversion formulas in regions R1, R2 and R3

In section 4 have saw that the shape analysis of a (m2
jl(lo),m

2
jl(hi)) scatter plot alone reveals

the values of

f ≡ (mmax
jlf

)2 = m2
D(1 − RCD)(1 − RAB), (A.1)
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p ≡
(

m
(p)
jlf

)2
= m2

DRBC(1 − RCD)(1 − RAB) = fRBC , (A.2)

n ≡ (mmax
jln

)2 = m2
D(1 − RCD)(1 − RBC), (A.3)

in each of the three on-shell regions R1, R2 and R3. In addition, in regions R2 and R3

one also has a fourth measurement

q ≡
(

mmax
jl(eq)

)2
= m2

D (1 − RCD)
1 − RAB

2 − RAB
. (A.4)

Given these four measurements, it is worth asking whether the spectrum of four masses

mA, mB, mC and mD can be uniquely determined based on the (m2
jl(lo),m

2
jl(hi)) scatter

plot alone. Unfortunately, this is not possible, since the four measurements f , p, n and

q are not all independent, due to the constraint (4.8). Therefore, one more independent

measurement is needed.

Fortunately, the dilepton mass edge measurement is both robust and on-shell-region-

independent. Thus adding

a ≡ (mmax
ll )2 = m2

DRCD(1 − RBC)(1 − RAB), (A.5)

we obtain a set of 4 measurements

{a, f, p, n} ≡ {(mmax
jlf

)2,
(

m
(p)
jlf

)2
, (mmax

jln
)2, (mmax

ll )2}, (A.6)

which can be easily inverted to obtain the spectrum:

RAB = 1 − f − p

n
, (A.7)

RBC =
p

f
, (A.8)

RCD =

(

1 +
f − p

a

)−1

, (A.9)

m2
D =

a f n

(f − p)2

(

1 +
f − p

a

)

. (A.10)

In terms of the actual masses we get

m2
A =

an p

(f − p)2

(

1 − f − p

n

)

, (A.11)

m2
B =

an p

(f − p)2
, (A.12)

m2
C =

an f

(f − p)2
, (A.13)

m2
D =

an f

(f − p)2

(

1 +
f − p

a

)

. (A.14)

Notice the simplicity of these formulas in comparison to (2.23)–(2.26) and (2.28)–(2.30).

The simplicity is mostly due to the fact that we are not using the measurement (2.15)

whose analytical expression is rather complicated.
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[75] C. Csáki, J. Heinonen and M. Perelstein, Testing gluino spin with three-body decays,

JHEP 10 (2007) 107 [arXiv:0707.0014] [SPIRES].

– 43 –

http://dx.doi.org/10.1103/PhysRevD.79.074005
http://arxiv.org/abs/0811.2138
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2138
http://dx.doi.org/10.1088/1126-6708/2009/03/085
http://arxiv.org/abs/0812.1042
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.1042
http://dx.doi.org/10.1016/j.physletb.2004.06.074
http://arxiv.org/abs/hep-ph/0405052
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405052
http://dx.doi.org/10.1088/1126-6708/2005/07/033
http://arxiv.org/abs/hep-ph/0502041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0502041
http://dx.doi.org/10.1088/1126-6708/2005/10/069
http://arxiv.org/abs/hep-ph/0507170
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507170
http://arxiv.org/abs/hep-ph/0507284
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507284
http://dx.doi.org/10.1103/PhysRevD.72.096006
http://arxiv.org/abs/hep-ph/0509246
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0509246
http://arxiv.org/abs/hep-ph/0510204
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0510204
http://dx.doi.org/10.1088/1126-6708/2006/02/042
http://arxiv.org/abs/hep-ph/0511115
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0511115
http://dx.doi.org/10.1103/PhysRevD.74.095010
http://arxiv.org/abs/hep-ph/0605067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605067
http://dx.doi.org/10.1088/1126-6708/2006/08/055
http://arxiv.org/abs/hep-ph/0605286
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605286
http://dx.doi.org/10.1088/1126-6708/2007/04/032
http://arxiv.org/abs/hep-ph/0605296
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605296
http://arxiv.org/abs/hep-ph/0606212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0606212
http://arxiv.org/abs/hep-ph/0608322
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0608322
http://dx.doi.org/10.1140/epjc/s10052-007-0330-7
http://arxiv.org/abs/hep-ph/0609296
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0609296
http://dx.doi.org/10.1063/1.2735221
http://arxiv.org/abs/hep-ph/0610057
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0610057
http://dx.doi.org/10.1088/1126-6708/2007/05/052
http://arxiv.org/abs/hep-ph/0703085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0703085
http://dx.doi.org/10.1103/PhysRevD.75.115013
http://arxiv.org/abs/0704.0254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0704.0254
http://dx.doi.org/10.1088/1126-6708/2007/10/107
http://arxiv.org/abs/0707.0014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.0014


J
H
E
P
0
5
(
2
0
0
9
)
0
9
4

[76] A. Datta, P. Dey, S.K. Gupta, B. Mukhopadhyaya and A. Nyffeler, Distinguishing the

Littlest Higgs model with T-parity from supersymmetry at the LHC using trileptons,

Phys. Lett. B 659 (2008) 308 [arXiv:0708.1912] [SPIRES].

[77] M.R. Buckley, H. Murayama, W. Klemm and V. Rentala, Discriminating spin through

quantum interference, Phys. Rev. D 78 (2008) 014028 [arXiv:0711.0364] [SPIRES].

[78] M.R. Buckley, B. Heinemann, W. Klemm and H. Murayama, Quantum interference effects

among helicities at LEP-II and Tevatron, Phys. Rev. D 77 (2008) 113017

[arXiv:0804.0476] [SPIRES].

[79] G.L. Kane, A.A. Petrov, J. Shao and L.-T. Wang, Initial determination of the spins of the

gluino and squarks at LHC, arXiv:0805.1397 [SPIRES].

[80] M. Burns, K. Kong, K.T. Matchev and M. Park, A general method for model-independent

measurements of particle spins, couplings and mixing angles in cascade decays with missing

energy at hadron colliders, JHEP 10 (2008) 081 [arXiv:0808.2472] [SPIRES].

[81] W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, MT2-assisted on-shell reconstruction of

missing momenta and its application to spin measurement at the LHC, Phys. Rev. D 79

(2009) 031701 [arXiv:0810.4853] [SPIRES].

[82] N. Arkani-Hamed, G.L. Kane, J. Thaler and L.-T. Wang, Supersymmetry and the LHC

inverse problem, JHEP 08 (2006) 070 [hep-ph/0512190] [SPIRES].

[83] B.K. Gjelsten, D.J. Miller and P. Osland, Resolving ambiguities in mass determinations at

future colliders, hep-ph/0507232 [SPIRES].

[84] B.K. Gjelsten, D.J. Miller, P. Osland and A.R. Raklev, Mass ambiguities in cascade decays,

hep-ph/0611080 [SPIRES].

[85] M. Burns, Generalizing the method of kinematical endpoints, talk given at the Pheno 2008

Symposium “LHC Turn On”, Madison WI U.S.A., April 28 2008.

[86] M. Park, Ambiguities in SUSY mass determination from kinematic endpoints at LHC, talk

given at the Pheno 2008 Symposium “LHC Turn On”, Madison WI U.S.A., April 28 2008.

[87] K. Matchev, New physics signatures and precision measurements at the LHC, talk given at

the KITP Conference: “Anticipating Physics at the LHC Collider”, UC Santa Barbara

U.S.A., June 5 2008.

[88] G. Karapostoli, Feasibility of SUSY particle mass measurements from endpoints in di-lepton

events, talk given at the CMS SUSY Meeting, CERN Switzerland, December 16 2008;

See also L. Pape, Reconstruction of sparticle masses from endpoints (and others) at LHC,

CMS Internal Note CMS IN-2006/12.

[89] D. Costanzo and D.R. Tovey, Supersymmetric particle mass measurement with invariant

mass correlations, JHEP 04 (2009) 084 [arXiv:0902.2331] [SPIRES].

[90] P. Bechtle, K. Desch and P. Wienemann, Fittino, a program for determining MSSM

parameters from collider observables using an iterative method,

Comput. Phys. Commun. 174 (2006) 47 [hep-ph/0412012] [SPIRES].

– 44 –

http://dx.doi.org/10.1016/j.physletb.2007.11.050
http://arxiv.org/abs/0708.1912
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.1912
http://dx.doi.org/10.1103/PhysRevD.78.014028
http://arxiv.org/abs/0711.0364
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.0364
http://dx.doi.org/10.1103/PhysRevD.77.113017
http://arxiv.org/abs/0804.0476
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0476
http://arxiv.org/abs/0805.1397
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.1397
http://dx.doi.org/10.1088/1126-6708/2008/10/081
http://arxiv.org/abs/0808.2472
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2472
http://arxiv.org/abs/0810.4853
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0810.4853
http://dx.doi.org/10.1088/1126-6708/2006/08/070
http://arxiv.org/abs/hep-ph/0512190
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0512190
http://arxiv.org/abs/hep-ph/0507232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507232
http://arxiv.org/abs/hep-ph/0611080
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611080
http://dx.doi.org/10.1088/1126-6708/2009/04/084
http://arxiv.org/abs/0902.2331
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0902.2331
http://dx.doi.org/10.1016/j.cpc.2005.09.002
http://arxiv.org/abs/hep-ph/0412012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0412012

	Introduction
	Analytical results
	Forward formulas
	On-shell scenario
	Off-shell scenario

	Inversion formulas

	Duplication analysis
	Kinematic boundary lines for the m(jl(lo))**2 versus m(jl(hi))**2 distribution
	Kinematic boundary lines for the m(ll)**2 versus m(jll)**2 distribution
	Summary and outlook
	Simple inversion formulas in regions R(1), R(2) and R(3)

